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Noise-Induced Clumping in the One-Dimensional 
Reversible Diffusion-Limited Single-Species 
Coagulation Process 

W e r n e r  H o r s t h e m k e  I 

We investigate the interplay of internal fluctuations and external noise in the 
diffusion-reaction system A + A ~ A, where the coagulation reaction is in the 
diffusion-controlled regime. Our theoretical treatment of the system is based on 
a recently developed exact and unified description that accounts for both types 
of random fluctuations. Specifically, we study the case where the external noise 
affects the diffusion coefficient, i.e., the coagulation rate, and is given by a 
dichotomous Markov process. We provide exact solutions for the steady state 
of the system and show that the spatially homogeneous external noise drives the 
system out of thermodynamic equilibrium. The noise induces microscopic 
spatial correlations between the particle positions. We compare this noise- 
induced clumping to the previously studied case of external noise in the birth 
rate, and discuss the similarities and differences. 

KEY WORDS: Interacting particle system; diffusion-reaction system; external 
noise; dichotomous Markov process. 

1. I N T R O D U C T I O N  

The  effects of  ex te rna l  no ise  o n  the d y n a m i c a l  b e h a v i o r  of n o n l i n e a r  

sys tems tha t  lack spa t ia l  degrees of f reedom are well u n d e r s t o o d  (see, e.g,, 

ref. 1). R a n d o m  f luc tua t ions  in  the e n v i r o n m e n t  of  the sys tem can  p o s t p o n e  
or  a d v a n c e  ins tabi l i t ies ,  a n d  can  even  g iven  rise to t r ans i t i ons  to states tha t  

c a n n o t  occur  if the s u r r o u n d i n g s  are  free of s tochas t ic  var ia t ions .  The  

inf luence  of ex te rna l  no ise  o n  the d y n a m i c a l  b e h a v i o r  of spat ia l ly  
d i s t r i bu t ed  n o n l i n e a r  systems is less u n d e r s t o o d  a n d  a top ic  of cu r r en t  
in teres t  (see, e.g., ref. 2). E x t e r n a l  no ise  c an  in t e rac t  wi th  the  spat ia l  degrees 
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of freedom of the system as well as with the internal fluctuations intrinsic 
to many-body systems. We expect the latter effect to be particularly impor- 
tant for diffusion-limited reactions in low spatial dimensions. In such 
systems internal fluctuations can give rise to strong particle-particle 
correlations that dominate the macroscopic dynamics. (3-6) To describe and 
analyze the behavior of reaction-diffusion systems with internal fluctuations 
and external noise is a complicated, and often intractable, task. It is there- 
fore useful and desirable to find a simple many-body model system for 
which an exact, unified description of internal fluctuations and external 
noise can be easily formulated and for which exact analytical solutions can 
be obtained. 

One of the simplest diffusion-reaction systems is the reversible 
coagulation-growth process, A + A ~ A, with irreversible input, B ~ A, in 
one spatial dimension. We refer to the objects A as "particles" and consider 
the case where the transport of A constitutes the rate-limiting step for the 
reaction A + A ~ A; the particles coalesce immediately upon contact. In 
other words, the coagulation reaction is in the diffusion-controlled regime. 
This diffusion-reaction system is a simple interacting-particle system, and 
its behavior in the absence of external noise has been studied extensively 
and is well understood. (5'6"s-~3) The model has attracted attention because 
it allows for an exact and closed microscopic formulation in terms of a 
single linear partial differential equation. In statistical physics many-body 
systems are typically described with a set of joint probability density 
functions. This approach encounters the usual closure problem: No finite 
subset of probability density functions can fully characterize the system, 
since the temporal evolution of the lower members of the hierarchy 
depends on the higher particle densities. For the specific model we consider 
here, an alternate approach based on the probability E(x,y, t) that the 
interval [x,y],  with x<,y, is empty at time t, leads to an exact, closed 
microscopic description. It is usual to define the model initially on a lattice 
of lattice spacing Ax and then to take the continuum limit. In this limit the 
empty-interval probability obeys the following linear partial differential 
equation(14): 

~?E(x, y, t) ~ c3E ~ aE 
at ax D(x, t) + D(y, t) a7 

with the boundary condition 

l i m E ( x , y , t ) = l  for y+x or xTy  (1.2) 
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The other boundary conditions, imposed as either y ~ +oe or x ~ -0% 
depend on the specific conditions at hand. In (1.1), D(x, t) is the diffusion 
coefficient, v(x, t) is the birth rate, i.e., the rate of the back reaction 
A ~ A + A, and R(x,  t) is the rate of particle input at point x. 

In the following we will consider only the case that the diffusion coef- 
ficient D, the birth rate v, and the rate of particle input R are uniform in 
space and that the system is statistically spatially homogeneous. With 
x ' =  y - x ,  Eq. (1.1) reduces then to (6) 

~?tE(x, t) = 2D ~xxE(x, t) + v c?xE(x, t) - RxE(x ,  t) =- L(D, v, -R) E(x, t) 

(1.3) 

where we dropped the prime on x. The boundary conditions are 

E(0, t )=  1 and E(oe, t ) = 0  (1.4) 

Here E(x, t) is the probability that a randomly chosen interval of length x 
is empty at time t. The probability that a small interval of length dx is 
occupied equals 1 - E ( d x ,  t). Hence the concentration, or density, of 
particles is defined by 

c(t)= OE(X,ox t) x=o 0 . 5 )  

Note that the concentration c(t) is an ensemble averageJ 14) It does not 
itself fluctuate, but if fully takes into account all the microscopic fluctua- 
tions in the system, i.e., the internal fluctuations, and any correlations 
which may develop. (We are considering an infinite system and have taken 
the thermodynamic limit.) Correlations can be characterized by the inter- 
particle distribution function (IPDF) p(x, t), the probability density of 
finding the nearest particle a distance x from a given particle. The IPDF 
is related to the empty-interval probability E(x, t) in the following way: 

~2E(x, t) 
c(t) p(x, t) - Ox 2 (1.6) 

A more detailed derivation of the evolution equations and the above 
quantities can be found in refs. 6 and 14. 

The organization of this paper is as follows: In Section 2 we will briefly 
summarize the closed, unified description of internal fluctuations and 
external noise that was developed in ref. 7 for the reversible diffusion- 
limited coagulation reaction A + A ~ A with irreversible input B--* A in 
opne spatial dimension. The kinetic equation for the strictly reversible 
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reaction-diffusion system, R = 0 ,  with constant birth rate v and with 
dichotomous Markov noise in the diffusion coefficient D is formulated in 
Section 3. The stationary form of the empty-interval probability, of the 
IPDF, and of the density is derived in Section 4. The Poisson white noise 
limit is briefly discussed at the end of that section. Section 5 contains 
concluding remarks and a discussion of some open problems. 

2. A UNIF IED DESCRIPT ION OF I N T E R N A L  F L U C T U A T I O N S  
A N D  EXTERNAL NOISE 

The kinetic equation (1.1), or (1.3), completely describes all internal 
fluctuations in the diffusion-reaction system (A+A~--~A, B ~ A )  in the 
diffusion-controlled regime. In ref. 7 the closed, exact microscopic descrip- 
tion of this model system was extended to include also the effects of 
external noise. Random variations in the surroundings can give rise to 
fluctuations in the diffusion coefficient Dr, or the birth rate v t, or the input 
rate Rt. A unified description that takes into account the internal fluctua- 
tions .of the reaction-diffusion system as well as the external noise is 
achieved by a natural extension of the central quantity of our approach, 
namely the joint probability E(x, D, v, R, t), which is defined by 

E(x, D, v, R, t) dD dv dR = prob{interval of length x is empty at time t 

and D, ~ (D, D + dD), 

and vt~(v, v+dv), 

and Rt~(R, R+dR)}  (2.1) 

This joint probability obeys the kinetic equation 

~,E(x, D, v, R, t) = [L(D, v, R) + WD + W~ + WR] E(x, D, v, R, t) (2.2) 

for statistically independent external fluctuations in the diffusion coefficient, 
the birth rate, and the rate of particle input. In (2.2) the operators W are 
the evoluation operators of the various stochastic processes, i.e., 

~3,pj= Wjpy (2.3) 

where pj is the probability (or probability density) of the stochastic process 
j, and j =  D, v, or R. The boundary conditions for (2.2) are 

E(O, D, v, R, t) = pD(D, t) p~(v, t) pR(R, t) (2.4) 
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and 
E(oo, D, v, R, t ) = 0  (2.5) 

The boundary conditions in the variables D, v, and R are specified once the 
stochastic processes are explicitly defined. 

In ref. 7 explicit, exact results are derived for the strictly reversible 
system, i.e., R = 0, with dichotomous Markov noise in the birth rate v, i.e., 
the rate of the process A --+ A + A, and constant D. In particular, the case 
that the birth rate fluctuates between zero and a fixed positive value is 
studied. It is found that the external noise drives the system out of thermo- 
dynamic equilibrium to a stationary nonequilibrium state. In this state, 
neither the empty interval probability nor the interparticle distribution 
function is a simple exponential corresponding to a totally random 
distribution of particles on the line, the maximum-entropy state charac- 
teristic of equilibria. The interaction of the internal fluctuations with the 
spatially homogeneous external noise gives rise to spatial correlations in 
the system in the form of clumping. The particles tend to bunch together 
on average, leaving relatively large empty intervals in between. This effect 
occurs without threshold, and the deviation from the equilibrium state 
increases smoothly with the strength of the noise. The noise-induced 
clumping is most pronounced in the Poisson white noise limit of the birth 
rate fluctuations. Interestingly, noise in the birth rate does not affect the 
stationary density; it always equals the equilibrium value for a system with 
the same average birth rate: c~ = (v,)/2D. 

In this paper we investigate the effect of spatially homogeneous 
external noise in the rate of the coagulation process, A + A--, A. Again we 
expect the interaction of internal fluctuations and external noise to induce 
correlations and clumping in the system. Indeed, when the diffusion coef- 
ficient becomes very small, the coagulation process will be dominated by 
the back process and existing particles should spawn clumps. However, the 
limit D--+ 0 is clearly a singular limit for the problem, viz. the highest- 
derivative term vanishes, contrary to the limit v--+ 0, and has to be studied 
carefully. Further, the density is inversely proportional to D and fluctua- 
tions in the diffusion coefficient are therefore expected to change the 
density, contrary to the case of fluctuations in the birth rate. 

3. F L U C T U A T I N G  C O A G U L A T I O N  RATE: D I C H O T O M O U S  
EXTERNAL NOISE 

We model fluctuations in the diffusion coefficient by a dichotomous 
Markov process, or random telegraph signal. The diffusion coefficient D 
takes on only two values D t ~ {D , D + }, and the lifetime of each state is 
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exponentially distributed. The latter is necessary and suffcient for the 
process to be Markovian. The kinetic equation, or master equation, for the 
probability of the process Dt reads 

where P _  = p r o b { D t = D  }, P+ = p r o b { D t = D + } ,  and c~ and fl are the 
jump frequencies from one state to the other. The stationary probability for 
dichotomous noise is given by 

Ps+ = - ,  Ps -  = - (3.2) 
7 

with 7 = e +/~. As usual we will assume that the environment of the system 
is stationary. Then the external noise is a stationary random process. Its 
mean value is 

~D + r i D +  
( D , )  - -=D (3.3) 

7 

and its correlation function is given by 

( D t + ~ D t }  - (Dt+~>{D,) =~-f (D+ - D  exp(-~ [zl) (3.4) 

The correlation time of the dichotomous noise is 

rcor = 1/~, (3 .5)  

The kinetic equation (2.2) for the reaction-diffusion system with 
external dichotomous noise in the diffusion coefficient reads 

where 

Ot \ E  +(x,  t) L+  - ~ J \ E  +(x,  t) 

L +_ = 2D + O x~ + v~3 ~ - R x  

We rescale space and time, 

/3 U 2 
' t '  = :, = ~ x ,  ~ t ,  

4D 2 2D 
R' = c~' 7 - R ,  = - -  

U2 ~ 

d+ D+ 
- D 

fl, 2D 

(3.6) 

(3.7) 

(3.8) 
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to obtain the kinetic equations in dimensionless form (dropping the primes) 

c?tE_ = d_ O~xE_ + OxE - R x E  - f i E  + c~E+ (3.9) 

and 

~?,E+ = d+ ~?xxE + + ~?xE + - R x E  + + f i E  - c~E + (3.10) 

The boundary conditions for (3.9) and (3.10) are 

E (0, t ) = P = _ = - ,  E _ ( ~ , t ) = 0  

7 (3.11) 

E+(0, t) = P=+ = - ,  E+(c~, t ) = 0  
? 

The dimensionless ensemble-averaged concentration is again computed by 

c ( t ) -  c3E(X,~x t) x=o (3.12) 

where the unconditional empty-interval probability E(x, t) is given by 

E(x, t ) = E  (x, t ) + E + ( x ,  t) (3.13) 

The concentration of the equilibrium state in dimensionless variables is 
Ceq = 1. 

We simplify the system of coupled kinetic equations (3.9) and (3.10) 
by using (3.9) to eliminate E+ in (3.10). After some simple algebra we 
obtain 

c~,,E_ + 7c3,E_ - (d+ + d_ ) Ox~,E_ - 20x, E + 2Rx ~t E_ 

= - d + d  0 . . . .  E - ( d + + d  )c3~xxE + ( 7 - 1 ) O x x E _  +7~?xE 

+ R [ ( d + + d  )x~?~xE +2(d+ + x )  3~E + ( 1 - R x  2 - T x ) E _ ]  

(3.14) 

Recall that with the scaling (3.8) the average value of d, equals one. Thus, 
if we fix the lower level of the dichotomous noise 

d_ =~ (3.15) 

then the upper level is given by 

1 
d+ = ~  (7 - ee) (3.16) 
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4. STEADY-STATE BEHAVIOR: NOISE- INDUCED CLUMPING 

In the absence of external noise and in the case of no particle input, 
R- -0 ,  the process settles down to an equilibrium state, characterized by an 
exponentially decreasing empty-interval probability and IPDF(6): 

Eeq(X ) = e -`eqx (4.1) 

and 

Peq(X) = Ceqe CeqX (4.2) 

This IPDF  corresponds to a totally random (Poisson) distribution of 
particles on the line, which is the maximum-entropy state. 

The effect of a fluctuating coagulation rate on the equilibrium state 
can be determined from (3.14) with Ot = 0 and R =  0: 

0 =  - d + d _ 8  . . . .  E _ - ( d +  +d )OxxxE_ +(7-1)SxxE_ +70xE_ (4.3) 

This is a linear differential equation with constant coefficients and it can be 
solved with the usual ansatz: 

E_ oc e -kx (4.4) 

We obtain the characteristic polynomial 

0 =  -d+d  k 4 + ( d +  +d )k3+(7 -1 )k2 -Tk  (4.5) 

In addition to the eigenvalue k 1=0,  which corresponds to an empty 
system, we have the roots of the cubic polynomial 

d+d k 3 - ( d + + d  ) k 2 - ( 7 - 1 ) k + ~ = 0  (4.6) 

Equation (4.6) has one negative and two positive real roots. Only the 
latter are acceptable in light of the boundary condition (3.11) as x ~ oe. In 
the general case the complicated explicit form of the roots is not very 
enlightening and will not be given here. In the case d_ = e ~ 1, the case we 
expect to display the strongest interaction of external noise with internal 
fluctuations, we can obtain compact analytical expressions for the roots. 
Making the ansatz k = xl/e +/(2 -t- . . .  and using (3.16), we find to dominant 
order: 

1 
k 2 = - q- fi -b O(8)  (4 .7)  

and 

k 3 4 - f l ( 7 - 1 ~ )  I ( 472 ~1/2q " 2~, - 1 +  14 B(-_--l)2 j ] + O ( e )  (4.8) 
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Note  that  k 4 is negative and thus not  compat ib le  with the bounda ry  
conditions. 

Let  k2 and k3 be the two positive roots  of (4.6). (If d = e ~ 1, they are 
given by the above  expressions. Otherwise,  the values for k 2 and k3 are 
obta ined  numerically.)  The  steady-state  expression for E is given by 

E_ (x)= C2e-k2x + C3 e-g3x 

and f rom (3.9) we obta in  the corresponding expression for E+  : 

(4.9) 

Also we have 

~E(x) 
Ox 

with 

The  s ta t ionary  
given by 

(Here  and in the following e < 1, but  not  necessarily e ~ 1.) The  coefficients 
C2 and C3 are determined by the bounda ry  condit ions at x = 0  [-see 
(3.11)], and after some algebra we find 

and 

k3(1 -ek3)  
C2 - (4.11 ) 

"f k3(1 - ek3) - k2(1 - ek2) 

~z k2(1 -- ek2) 
C3 = (4.12) 

k3(1 - ek3) - k2(1 - eke) 

empty- in terval  probabi l i ty  E(x) = E (x) + E+ (x) is then 

E(x) = N{ [y + k2(1 - ek2)] k3(1 - ek3)e-k2x 

__ [])..~_k3( 1 _ E k 3 ) ]  k2(1 _ek2)e k3x} (4.13) 

N = ( 4 . 1 4 )  
7 [k3(1 - ek3) - k2(1 - ek2) ] 

= N{ - [7 + k2(1 - ek2)] k2k3(1 - ek3)e-k2x 

+ [7 + k3(1 - ~k3)] k:k3(1 - ek2)e -k3~ } (4.15) 

c c E + ( x ) = ( - e k 2 + k 2 + f l ) C 2 e  k 2 x + ( - e k ~ + k 3 + f l )  C3e-k3x (4.10) 
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Fig. 1. Semilogarithmic plot of the interparticle distribution function (IPDF) for the noisy 
system (continuous curve) and an equilibrium system with the same concentration (dotted 
curve). The noise parameters are: (a) d =0.1, fl= 1, 7= 10; (b) d =0.001, f l= l ,  7= 10; 
(c) d =0.1, fl= 10, 7= 100; (d) d =0.001, fl= 10, 7= 100. Note the change in the scale 
of the x axis between (a) and (b) and between (c) and (d). The stationary densities are: 
(a) cs=4.22; (b) cs= 354; (c) c~= 1.98; (d) cs= 77.7. 
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the stationary density 

OE(x, t) x=O = N(k3 - k2)[Tk2k3e + k2k3(1 - ek2)(1 - e k 3 )  ] Cs = ~X 

(4.16) 

(which does not equal (1~dr) ,  or ( v / 2 D , )  in dimensioned variables), and 
the stationary I P D F  

822/70/1-2-11 
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1 02E(x) 
pax) 

r r 

1 
= - -  N {  [ 7  + k 2 ( 1  - e k 2 ) ]  k2k3( 1 - ek3)e k:x 

r 

- [7+k3(1  - e k 3 ) ]  k2k3(1 -ek2)e k3x} (4.17) 

�9 For  ~ < 1 the expression for the stationary density reduces to 

1 k3~ 
- -  + O(~ ~ (4.18)  

C . . . .  ym - -  e7 k s  + fl 

and that of the I PDF  to 

P . . . .  ym(X)=~exp(-X)+o(  e~ ) (4.19) 

where k3 is given by (4.8). 
As expected, macroscopic external fluctuations in the diffusion 

coefficient, or in other words in the coagulation rate, drive the system out 
of equilibrium. They drive the IPDF,  as well as the empty-interval prob- 
ability, away from the simple exponential distribution. The form of the 
IPDF  (4.17) indicates that the interaction of the spatially homogeneous 
external noise with the statistically homogeneous internal fluctuations 
induces microscopic particle-particle correlations, clumping, and destroys 
the property of detailed balance. The external noise induces a non- 
equilibrium steady state in the strictly reversible diffusion-reaction system. 
The noise-induced clumping is clearly revealed in Fig. 1, where we plot 
ps(x) vs. x for several values of d ,  /3, and 7. The equilibrium IP D F  for a 
system with the same density as the noisy system is plotted for comparison. 
The nonequilibrium ps(X) is larger than the equilibrium Peq(X) for small x 
and for large x. This indicates that the particles bunch together; the system 
displays relatively more of the smaller and of the larger gaps between 
adjacent particles as compared to the equilibrium state of a completely 
independent distribution of particles. 

The first term in the IPDF approaches ever more closely a Dirac 
6-distribution as d_ = e approaches zero. This behavior is independent of 
the correlation time of the noise and occurs already for finite 7- This is in 
contrast to the case of dichotomous Markov noise in the birth rate. The 
IPDF displays a 6-peak at zero only as v+ approaches infinity, which in 
turn requires that 7 diverg es-(7) In other words, the birth-rate fluctuations 
must approach the white noise limit. The limit of vanishing correlation 
time, rcor ~ 0, does not give rise to new behavior for external noise in the 
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diffusion Coefficient. The Poisson white noise limit of the dichotomous 
Markov process corresponds to (15) 

d + ~ o %  e ~ o %  such that d+ - -=~=o(1)  

Using (3.16), we obtain 

(4.20) 

crfl = 1 - e (4.21) 

As the Poisson white noise limit is approached, we keep only the dominant 
terms in the coefficients of the characteristic polynomial (4.6), which 
reduces to 

c~r - / ? a ) k  3 - -  ~ o - k  2 - ~ k  -t- ~ = 0 (4.22) 

o r  

a ( 1 - ~ a ) k 3 - G k 2 - k +  1 = 0  (4.23) 

The structure of (4.22) differs from that of the corresponding characteristic 
polynomial for the fluctuating birth-rate case. There the coefficient of the 
cubic term contains no c~, while the coefficients of all other terms are 
proportional to c~. This results in an eigenvalue k oc c~, and hence a 
contribution to the IPDF  that approaches a Dirac &function in the white 
noise limit. In our case, there is no eigenvalue that approaches infinity as 
c~ approaches infinity. As in the case of finite correlation times, (4.22), or 
(4.23), has a root that diverges if the lower level of the noise approaches 
zero, i.e., 

5. D I S C U S S I O N  

We have shown that spatially homogeneous, macroscopic external 
noise in the diffusion coefficient of the reversible diffusion-limited coagula- 
tion reaction A + A ~ A drives the system out of thermodynamic equi- 
librium. The noise interacts with the internal fluctuations of the system and 
the spatial degrees of freedom to induce a nonequilibrium steady state in 
which the particle positions are correlated. The particles tend to bunch 
together on average. This effect occurs already for finite correlation times 
of the noise and becomes more pronounced as the lower level of the 
dichotomous noise decreases, d_--* 0, and as the lifetime of the level 
increases,/~-~ 0. This clumping phenomenon shares some features with the 
clumping induced by birth-rate fluctuations in the same system. The main 
differences are that fluctuations in diffusivity change the stationary density 
- - i t  increases--and produce a quasi-Dirac-6-function peak in the inter- 



162 Horsthemke 

particle distribution function already for colored noise, if the diffusion 
coefficient becomes small during random time intervals. 

There remain several interesting questions: How do fluctuations in the 
birth rate or the diffusion coefficient affect the dynamic transition in the 
relaxation kinetics of the reversible process A + A ~ A? This transition 
occurs in the absence of random variations in the surroundings when 
switching between equilibria of different values of the system parameters. 
How does the clumping depend on the character of the noise, i.e., its state 
space and probability distribution? How does spatially inhomogeneous 
noise, for instance, spatial disorder frozen in time, affect the equilibrium 
state of the diffusion-reaction system? Work on these questions is currently 
in progress and results will be reported elsewhere. 
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